ncovitems

results:

The upshot of Polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal

Polyphenols are a large family of more than 10,000 naturally occurring compounds, which exert countless pharmacological, biological and physiological benefits for human health including several chronic diseases such as cancer, diabetes, cardiovascular, and neurological diseases. Their role in traditional medicine, such as the use of a wide range of remedial herbs (thyme, oregano, rosemary, sage, mint, basil), has been well and long known for treating common respiratory problems and cold infections. This review reports on the most highlighted polyphenolic compounds present in up to date literature and their specific antiviral perceptive properties that might enhance the body immunity facing COVID-19, and other viral infectious diseases. In fact, several studies and clinical trials increasingly proved the role of polyphenols in controlling numerous human pathogens including SARS and MERS, which are quite similar to COVID-19 through the enhancement of host immune response against viral infections by different biological mechanisms. Thus, polyphenols ought to be considered as a potential and valuable source for designing new drugs that could be used effectively in the combat against COVID‐19 and other rigorous diseases. Keywords: Polyphenols, Natural product, COVID-19, SARS, Respiratory tract, Infectious diseases

Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine

Glucose 6-phosphate dehydrogenase (G6PD) deficiency facilitates human coronavirus infection due to glutathione depletion. G6PD deficiency may especially predispose to hemolysis upon coronavirus disease-2019 (COVID-19) infection when employing pro-oxidant therapy. However, glutathione depletion is reversible by N-acetylcysteine (NAC) administration. We describe a severe case of COVID-19 infection in a G6PD-deficient patient treated with hydroxychloroquine who benefited from intravenous (IV) NAC beyond reversal of hemolysis. NAC blocked hemolysis and elevation of liver enzymes, C-reactive protein (CRP), and ferritin and allowed removal from respirator and veno-venous extracorporeal membrane oxygenator and full recovery of the G6PD-deficient patient. NAC was also administered to 9 additional respirator-dependent COVID-19-infected patients without G6PD deficiency. NAC elicited clinical improvement and markedly reduced CRP in all patients and ferritin in 9/10 patients. NAC mechanism of action may involve the blockade of viral infection and the ensuing cytokine storm that warrant follow-up confirmatory studies in the setting of controlled clinical trials. Keywords: Coronavirus 19, COVID-19, N-acetylcysteine, Glutathione, Glucose 6-phosphate dehydrogenase, Mechanistic target of rapamycin, C-reactive protein, Ferritin, Respirator, Extracorporeal membrane oxygenation

Potential therapeutic effects of Resveratrol against SARS-CoV-2

Home Acta Virologica 2020 Acta Virologica Vol.64, No.3, p.276-280, 2020 --- Novel Coronavirus COVID-19 or Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), are human pathogens. Current pandemics of SARS-CoV-2 represents a major health problem worldwide, with over four million cases and more than 300,000 deaths in the world. Development of effective therapy thus became an emergency. This report aims to highlight Resveratrol as possible therapeutic candidate in SARS-CoV-2 infection. The antiviral efficacy of Resveratrol was demonstrated for several viruses, including coronavirus. Resveratrol was shown to mitigate the major pathways involved in the pathogenesis of SARS-CoV-2, including regulation of the renin-angiotensin system (RAS) and expression of angiotensin-converting enzyme 2 (ACE2), stimulation of immune system and downregulation of pro-inflammatory cytokines release. It was also reported to promote SIRT1 and p53 signaling pathways and increase cytotoxic T lymphocytes (CTLs) and natural killer (NK) immune cells. In addition, Resveratrol was demonstrated to be a stimulator of fetal hemoglobin and a potent antioxidant, by trapping reactive oxygen species (ROS). According to these reports, Resveratrol could be proposed as potential therapeutics in the treatment of SARS-CoV-2. Keywords: SARS-CoV-2; Resveratrol; antiviral activity; immune response; ACE2; oxidative stress; HbF.

Medical journal article shows several key aspects of RESV and virus inhibition against another highly virulent virus in pigs.

Antiviral properties of resveratrol against pseudorabies virus are associated with the inhibition of IκB kinase activation. (Note, this study is not about COVID-19 directly, however its illustrative of how RESV can work to prevent and/or atetnuate a much more pathogenic virus that infects the brain in a way that is relevant to COVID-19, when we consider that RESV has similarly been shown to inhibit the SARS-CoV-2 virus (as well as MERS and SARS-CoV-1) in vitro, in the lab.

Stilbene-based natural compounds as promising drug candidates against COVID-19

Note that resveratrol is already available in the supply chain and inexpensive. J Biomol Struct Dyn . 2020 May 12;1-10. doi: 10.1080/07391102.2020.1762743. Online ahead of print. Hussain Mustatab Wahedi , Sajjad Ahmad , Sumra Wajid Abbasi PMID: 32345140 DOI: 10.1080/07391102.2020.1762743 The pandemic coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a great threat to public health. Currently, no potent medicine is available to treat COVID-19. Quest for new drugs especially from natural plant sources is an area of immense potential. The current study aimed to repurpose stilbenoid analogs, reported for some other biological activities, against SARS-CoV-2 spike protein and human ACE2 receptor complex for their affinity and stability using molecular dynamics simulation and binding free energy analysis based on molecular docking. Four compounds in total were probed for their binding affinity using molecular docking. All of the compounds showed good affinity (> -7 kcal/mol). However, fifty nanoseconds molecular dynamic simulation in aqueous solution revealed highly stable bound conformation of resveratrol to the viral protein: ACE2 receptor complex. Net free energy of binding using MM-PBSA also affirmed the stability of the resveratrol-protein complex. Based on the results, we report that stilbene based compounds in general and resveratrol, in particular, can be promising anti-COVID-19 drug candidates acting through disruption of the spike protein. Our findings in this study are promising and call for further in vitro and in vivo testing of stiblenoids, especially resveratrol against the COVID-19. Stilbenoid analogs could be potential disruptors of SARS-CoV-2 spike protein and human ACE2 receptor complex.In particular, resveratrol revealed highly stable conformation to the viral protein: ACE2 receptor complex.The strong interaction of resveratrol is affirmed by molecular dynamic simulation studies and better net free energies. Keywords: COVID-19; MM-PBSA; Stilbenoids; molecular docking; molecular dynamic simulations

Potential therapeutic effects of Resveratrol against SARS-CoV-2 (COVID-19)

"This report aims to highlight Resveratrol as possible therapeutic candidate in SARS-CoV-2 infection. The antiviral efficacy of Resveratrol was demonstrated for several viruses, including coronavirus. Resveratrol was shown to mitigate the major pathways involved in the pathogenesis of SARS-CoV-2, including regulation of the renin-angiotensin system (RAS) and expression of angiotensin-converting enzyme 2 (ACE2), stimulation of immune system and downregulation of pro-inflammatory cytokines release. It was also reported to promote SIRT1 and p53 signaling pathways and increase cytotoxic T lymphocytes (CTLs) and natural killer (NK) immune cells. In addition, Resveratrol was demonstrated to be a stimulator of fetal hemoglobin and a potent antioxidant, by trapping reactive oxygen species (ROS). According to these reports, Resveratrol could be proposed as potential therapeutics in the treatment of SARS-CoV-2. " Keywords: SARS-CoV-2; Resveratrol; antiviral activity; immune response; ACE2; oxidative stress; HbF. -- Acta Virol . 2020 Sep 28. doi: 10.4149/av_2020_309. Online ahead of print.

The Role of Glutathione in Protecting against the Severe Inflammatory Response Triggered by COVID-19

The novel COVID-19 pandemic is affecting the world’s population differently: mostly in the presence of conditions such as aging, diabetes and hypertension the virus triggers a lethal cytokine storm and patients die from acute respiratory distress syndrome, whereas in many cases the disease has a mild or even asymptomatic progression. A common denominator in all conditions associated with COVID-19 appears to be the impaired redox homeostasis responsible for reactive oxygen species (ROS) accumulation; therefore, levels of glutathione (GSH), the key anti-oxidant guardian in all tissues, could be critical in extinguishing the exacerbated inflammation that triggers organ failure in COVID-19. The present review provides a biochemical investigation of the mechanisms leading to deadly inflammation in severe COVID-19, counterbalanced by GSH. The pathways competing for GSH are described to illustrate the events concurring to cause a depletion of endogenous GSH stocks. Drawing on evidence from literature that demonstrates the reduced levels of GSH in the main conditions clinically associated with severe disease, we highlight the relevance of restoring GSH levels in the attempt to protect the most vulnerable subjects from severe symptoms of COVID-19. Finally, we discuss the current data about the feasibility of increasing GSH levels, which could be used to prevent and subdue the disease. Keywords: SARS-CoV-2, angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), glutathione, inflammation, ROS, N-acetylcysteine, NAC, glycine.

Anti-inflammatory effect of resveratrol in human coronary arterial endothelial cells via induction of autophagy: implication for the treatment of Kawasaki disease.

NOTE: Its not known if these effects would translate to beneficial effects in COVID-19 at all. Please don't think it's known if it would or would not, it's not. ------ Kawasaki disease (KD) is an acute febrile vasculitis in childhood, which is the leading cause of acquired heart disease in children. If untreated, KD can result in coronary aneurysms in 25% of patients, and even under intravenous immunoglobulin (IVIG) treatment, 10-20% of children will have IVIG resistance and increased risk of developing coronary arteritis complication. Additional therapies should be explored to decrease the incidence of coronary artery lesions and improve the prognosis in KD. Autophagy has been reported to play a critical role in a variety of heart diseases. Resveratrol (RSV) confers cardio protection during ischemia and reperfusion in rats via activation of autophagy. Serum TNF-alpha levels are elevated in KD, which might activate the endothelial cells to express intercellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion molecule-1(VCAM-1), inducible nitric oxide synthase (iNOS) and IL-1β. METHODS: Human coronary arterial endothelial cells (HCAECs) were either untreated or treated by TNF-α 10 ng/ml for 2 h in the presence or absence of RSV or autophagy-related protein 16-like 1 (Atg16L1) siRNA. Total RNA was analyzed by real-time quantitative PCR for ICAM-1, VCAM-1, iNOS and IL-1β mRNA expressions. The involvement of autophagy proteins was investigated by Western blot. RESULTS: Pretreatment with resveratrol significantly inhibited TNF-α-induced ICAM-1, iNOS and IL-1β mRNA expression in HCAECs. Western blot revealed the enhanced autophagy proteins LC3B and Atg16L1 expression by RSV. The suppressive effects of RSV were obviously counteracted by Atg16L1 siRNA. CONCLUSIONS: We demonstrated RSV had anti-inflammatory effects on HCAECs via induction of autophagy. Our results suggest that resveratrol may modulate the inflammatory response of coronary artery in KD and explore the role of autophagy in the pathogenesis and alternative therapy of coronary arterial lesions in KD. KEYWORDS: Autophagy; Endothelial cells; Kawasaki disease; Resveratrol PMID: 28069066 PMCID: PMC5223384 DOI: 10.1186/s40360-016-0109-2

6000 Coronavirus dead unreported in Guayaquil: Corpses left on the sidewalk.

Ecuador has the highest per capita COVID-19 death toll in Latin America and the Caribbean. This story shows what will likely happen to the countries that have current infections if we abandon the social distancing too soon. The government should take care of people forced to stay at home, not give up on the poor and allow them to be evicted and forced to stand in line for aid. It should not be telling people to do things that will get them sick. This is why we should never have signed away the right to regulate. If we did not have GATS we could have public healthcare and housing, in particular. Not be trapped at a level set in the 90s. just before GATS (and perhaps soon TISA, TTIP, etc.) put us on their one way path to eventual "full unemployment" (due to it's massive offshoring, outsourcing, etc. jobs, a process which is only just beginning. Why? Its cheaper to offshore and outsource the jobs to temporary workers from developing countries than pay decent wages. That is "services liberalization": the Washington Consensus's real plan for everything. We should especially dump GATS before it dumps us.)

Antiviral properties of resveratrol against pseudorabies virus are associated with the inhibition of IκB kinase activation

Sci Rep. 2017; 7: 8782. Published online 2017 Aug 18. doi: 10.1038/s41598-017-09365-0 PMCID: PMC5562710 PMID: 28821840 Pseudorabies virus (PRV) is a pathogen of swine resulting in devastating disease and economic losses worldwide. Resveratrol (Res) exhibits inhibitory activity against a wide range of viruses. Despite these important advances, the molecular mechanism(s) by which Res exerts its broad biological effects have not yet been elucidated. In this paper, the antiviral activity of Res against PRV and its mechanism of action were investigated. The results showed that Res potently inhibited PRV replication in a dose-dependent manner, with a 50% inhibition concentration of 17.17 μM. The inhibition of virus multiplication in the presence of Res was not attributed to direct inactivation or inhibition of viral entry into the host cells but to the inhibition of viral multiplication in host cells. Further studies demonstrated that Res is a potent inhibitor of both NF-κB activation and NF-κB-dependent gene expression through its ability to inhibit IκB kinase activity, which is the key regulator in NF-κB activation. Thus, the inhibitory effect of Res on PRV-induced cell death and gene expression may be due to its ability to inhibit the degradation of IκB kinase. These results provided a new alternative control measure for PRV infection and new insights into the antiviral mechanism of Res.